Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.918
Filtrar
1.
Nat Commun ; 15(1): 2846, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565530

RESUMO

Hybrid immunity, acquired through vaccination followed or preceded by a COVID-19 infection, elicits robust antibody augmentation. We hypothesize that maternal hybrid immunity will provide greater infant protection than other forms of COVID-19 immunity in the first 6 months of life. We conducted a case-control study in Israel, enrolling 661 infants up to 6 months of age, hospitalized with COVID-19 (cases) and 59,460 age-matched non-hospitalized infants (controls) between August 24, 2021, and March 15, 2022. Infants were grouped by maternal immunity status at delivery: Naïve (never vaccinated or tested positive, reference group), Hybrid-immunity (vaccinated and tested positive), Natural-immunity (tested positive before or during the study period), Full-vaccination (two-shot regimen plus 1 booster), and Partial-vaccination (less than full three shot regimen). Applying Cox proportional hazards models to estimate the hazard ratios, which was then converted to percent vaccine effectiveness, and using the Naïve group as the reference, maternal hybrid-immunity provided the highest protection (84% [95% CI 75-90]), followed by full-vaccination (66% [95% CI 56-74]), natural-immunity (56% [95% CI 39-68]), and partial-vaccination (29% [95% CI 15-41]). Maternal hybrid-immunity was associated with a reduced risk of infant hospitalization for Covid-19, as compared to natural-immunity, regardless of exposure timing or sequence. These findings emphasize the benefits of vaccinating previously infected individuals during pregnancy to reduce COVID-19 hospitalizations in early infancy.


Assuntos
COVID-19 , Lactente , Gravidez , Feminino , Humanos , Estudos de Casos e Controles , Israel/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinação , Hospitalização , Imunidade Adaptativa
2.
Transpl Int ; 37: 12330, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567143

RESUMO

Immune cell metabolism plays a pivotal role in shaping and modulating immune responses. The metabolic state of immune cells influences their development, activation, differentiation, and overall function, impacting both innate and adaptive immunity. While glycolysis is crucial for activation and effector function of CD8 T cells, regulatory T cells mainly use oxidative phosphorylation and fatty acid oxidation, highlighting how different metabolic programs shape immune cells. Modification of cell metabolism may provide new therapeutic approaches to prevent rejection and avoid immunosuppressive toxicities. In particular, the distinct metabolic patterns of effector and suppressive cell subsets offer promising opportunities to target metabolic pathways that influence immune responses and graft outcomes. Herein, we review the main metabolic pathways used by immune cells, the techniques available to assay immune metabolism, and evidence supporting the possibility of shifting the immune response towards a tolerogenic profile by modifying energetic metabolism.


Assuntos
Glicólise , Linfócitos T Reguladores , Humanos , Diferenciação Celular , Imunidade Adaptativa
3.
Immunity ; 57(4): 613-631, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599162

RESUMO

While largely neglected over decades during which adaptive immunity captured most of the attention, innate immune mechanisms have now become central to our understanding of immunology. Innate immunity provides the first barrier to infection in vertebrates, and it is the sole mechanism of host defense in invertebrates and plants. Innate immunity also plays a critical role in maintaining homeostasis, shaping the microbiota, and in disease contexts such as cancer, neurodegeneration, metabolic syndromes, and aging. The emergence of the field of innate immunity has led to an expanded view of the immune system, which is no longer restricted to vertebrates and instead concerns all metazoans, plants, and even prokaryotes. The study of innate immunity has given rise to new concepts and language. Here, we review the history and definition of the core concepts of innate immunity, discussing their value and fruitfulness in the long run.


Assuntos
Imunidade Inata , Memória Imunológica , Animais , Invertebrados , Imunidade Adaptativa , Vertebrados
4.
Immunity ; 57(4): 632-648, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599163

RESUMO

One of the most significant conceptual advances in immunology in recent history is the recognition that signals from the innate immune system are required for induction of adaptive immune responses. Two breakthroughs were critical in establishing this paradigm: the identification of dendritic cells (DCs) as the cellular link between innate and adaptive immunity and the discovery of pattern recognition receptors (PRRs) as a molecular link that controls innate immune activation as well as DC function. Here, we recount the key events leading to these discoveries and discuss our current understanding of how PRRs shape adaptive immune responses, both indirectly through control of DC function and directly through control of lymphocyte function. In this context, we provide a conceptual framework for how variation in the signals generated by PRR activation, in DCs or other cell types, can influence T cell differentiation and shape the ensuing adaptive immune response.


Assuntos
Células Dendríticas , Imunidade Inata , Imunidade Adaptativa , Receptores de Reconhecimento de Padrão/metabolismo , Ativação Linfocitária
5.
RMD Open ; 10(2)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599653

RESUMO

OBJECTIVES: To assess incidence, severity and predictors of COVID-19, including protective post-vaccination levels of antibodies to the receptor-binding domain of SARS-CoV-2 spike protein (anti-RBD), informing further vaccine strategies for patients with immune-mediated inflammatory diseases (IMIDs) on immunosuppressive medication. METHODS: IMIDs on immunosuppressives and healthy controls (HC) receiving SARS-CoV-2 vaccines were included in this prospective observational study. COVID-19 and outcome were registered and anti-RBD antibodies measured 2-5 weeks post-immunisation. RESULTS: Between 15 February 2021 and 15 February 2023, 1729 IMIDs and 350 HC provided blood samples and self-reported COVID-19. The incidence of COVID-19 was 66% in patients and 67% in HC, with re-infection occurring in 12% of patients. Severe COVID-19 was recorded in 22 (2%) patients and no HC. No COVID-19-related deaths occurred. Vaccine-induced immunity gave higher risk of COVID-19 (HR 5.89 (95% CI 4.45 to 7.80)) than hybrid immunity. Post-immunisation anti-RBD levels <6000 binding antibody units/mL were associated with an increased risk of COVID-19 following three (HR 1.37 (95% CI 1.08 to 1.74)) and four doses (HR 1.28 (95% CI 1.02 to 1.62)), and of COVID-19 re-infection (HR 4.47 (95% CI 1.87 to 10.67)). CONCLUSION: Vaccinated patients with IMID have a low risk of severe COVID-19. Hybrid immunity lowers the risk of infection. High post-immunisation anti-RBD levels protect against COVID-19. These results suggest that knowledge on COVID-19 history, and assessment of antibody levels post-immunisation can help individualise vaccination programme series in high-risk individuals. TRIAL REGISTRATION NUMBER: NCT04798625.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Vacinas , Humanos , Incidência , Vacinas contra COVID-19/uso terapêutico , Estudos Prospectivos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Imunização , Terapia de Imunossupressão , Agentes de Imunomodulação , Imunidade Adaptativa
6.
Semin Cell Dev Biol ; 161-162: 42-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38608498

RESUMO

Mitochondria play a multitude of essential roles within mammalian cells, and understanding how they control immunity is an emerging area of study. Lymphocytes, as integral cellular components of the adaptive immune system, rely on mitochondria for their function, and mitochondria can dynamically instruct their differentiation and activation by undergoing rapid and profound remodelling. Energy homeostasis and ATP production are often considered the primary functions of mitochondria in immune cells; however, their importance extends across a spectrum of other molecular processes, including regulation of redox balance, signalling pathways, and biosynthesis. In this review, we explore the dynamic landscape of mitochondrial homeostasis in T and B cells, and discuss how mitochondrial disorders compromise adaptive immunity.


Assuntos
Linfócitos , Mitocôndrias , Animais , Mitocôndrias/metabolismo , Linfócitos/metabolismo , Imunidade Adaptativa , Transdução de Sinais , Homeostase , Mamíferos
7.
Cell Mol Life Sci ; 81(1): 185, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630271

RESUMO

When cells proliferate, stress on DNA replication or exposure to endogenous or external insults frequently results in DNA damage. DNA-Damage Response (DDR) networks are complex signaling pathways used by multicellular organisms to prevent DNA damage. Depending on the type of broken DNA, the various pathways, Base-Excision Repair (BER), Nucleotide Excision Repair (NER), Mismatch Repair (MMR), Homologous Recombination (HR), Non-Homologous End-Joining (NHEJ), Interstrand Crosslink (ICL) repair, and other direct repair pathways, can be activated separately or in combination to repair DNA damage. To preserve homeostasis, innate and adaptive immune responses are effective defenses against endogenous mutation or invasion by external pathogens. It is interesting to note that new research keeps showing how closely DDR components and the immune system are related. DDR and immunological response are linked by immune effectors such as the cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway. These effectors act as sensors of DNA damage-caused immune response. Furthermore, DDR components themselves function in immune responses to trigger the generation of inflammatory cytokines in a cascade or even trigger programmed cell death. Defective DDR components are known to disrupt genomic stability and compromise immunological responses, aggravating immune imbalance and leading to serious diseases such as cancer and autoimmune disorders. This study examines the most recent developments in the interaction between DDR elements and immunological responses. The DDR network's immune modulators' dual roles may offer new perspectives on treating infectious disorders linked to DNA damage, including cancer, and on the development of target immunotherapy.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Imunidade Adaptativa , Citocinas , Apoptose , Neoplasias/genética
8.
Genes Immun ; 25(2): 158-167, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570727

RESUMO

In this study, antibody response and a single-cell RNA-seq analysis were conducted on peripheral blood mononuclear cells from five different groups: naïve subjects vaccinated with AZD1222 (AZ) or Ad5-nCoV (Cso), individuals previously infected and later vaccinated (hybrid) with AZD1222 (AZ-hb) or Ad5-nCoV (Cso-hb), and those who were infected and had recovered from COVID-19 (Inf). The results showed that AZ induced more robust neutralizing antibody responses than Cso. The single-cell RNA data revealed a high frequency of memory B cells in the Cso and Cso-hb. In contrast, AZ and AZ-hb groups exhibited the highest proportion of activated naïve B cells expressing CXCR4. Transcriptomic analysis of CD4+ and CD8+ T cells demonstrated a heterogeneous response following vaccination, hybrid immunity, or natural infection. However, a single dose of Ad5-nCoV was sufficient to strongly activate CD4+ T cells (naïve and memory) expressing ANX1 and FOS, similar to the hybrid response observed with AZ. An interesting finding was the robust activation of a subset of CD8+ T cells expressing GZMB, GZMH, and IFNG genes in the Cso-hb group. Our findings suggest that both vaccines effectively stimulated the cellular immune response; however, the Ad5-nCoV induced a more robust CD8+ T-cell response in previously infected individuals.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Linfócitos T CD8-Positivos , Adenoviridae/genética , ChAdOx1 nCoV-19 , Leucócitos Mononucleares , Perfilação da Expressão Gênica , Imunidade Adaptativa , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética
9.
BMC Infect Dis ; 24(1): 407, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627637

RESUMO

BACKGROUND: Since the emergence of SARS-CoV-2 (COVID-19), there have been multiple waves of infection and multiple rounds of vaccination rollouts. Both prior infection and vaccination can prevent future infection and reduce severity of outcomes, combining to form hybrid immunity against COVID-19 at the individual and population level. Here, we explore how different combinations of hybrid immunity affect the size and severity of near-future Omicron waves. METHODS: To investigate the role of hybrid immunity, we use an agent-based model of COVID-19 transmission with waning immunity to simulate outbreaks in populations with varied past attack rates and past vaccine coverages, basing the demographics and past histories on the World Health Organization Western Pacific Region. RESULTS: We find that if the past infection immunity is high but vaccination levels are low, then the secondary outbreak with the same variant can occur within a few months after the first outbreak; meanwhile, high vaccination levels can suppress near-term outbreaks and delay the second wave. Additionally, hybrid immunity has limited impact on future COVID-19 waves with immune-escape variants. CONCLUSIONS: Enhanced understanding of the interplay between infection and vaccine exposure can aid anticipation of future epidemic activity due to current and emergent variants, including the likely impact of responsive vaccine interventions.


Assuntos
COVID-19 , Epidemias , Vacinas , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Vacinação , Imunidade Adaptativa
10.
Front Cell Infect Microbiol ; 14: 1342913, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469348

RESUMO

Helicobacter pylori (H. pylori) is the predominant pathogen causing chronic gastric mucosal infections globally. During the period from 2011 to 2022, the global prevalence of H. pylori infection was estimated at 43.1%, while in China, it was slightly higher at approximately 44.2%. Persistent colonization by H. pylori can lead to gastritis, peptic ulcers, and malignancies such as mucosa-associated lymphoid tissue (MALT) lymphomas and gastric adenocarcinomas. Despite eliciting robust immune responses from the host, H. pylori thrives in the gastric mucosa by modulating host immunity, particularly by altering the functions of innate and adaptive immune cells, and dampening inflammatory responses adverse to its survival, posing challenges to clinical management. The interaction between H. pylori and host immune defenses is intricate, involving evasion of host recognition by modifying surface molecules, manipulating macrophage functionality, and modulating T cell responses to evade immune surveillance. This review analyzes the immunopathogenic and immune evasion mechanisms of H. pylori, underscoring the importance of identifying new therapeutic targets and developing effective treatment strategies, and discusses how the development of vaccines against H. pylori offers new hope for eradicating such infections.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/fisiologia , Imunidade Adaptativa , Mucosa Gástrica/patologia , Evasão da Resposta Imune , Linfócitos T , Imunidade Inata
11.
Viruses ; 16(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543848

RESUMO

The Bunyavirales order includes at least fourteen families with diverse but related viruses, which are transmitted to vertebrate hosts by arthropod or rodent vectors. These viruses are responsible for an increasing number of outbreaks worldwide and represent a threat to public health. Infection in humans can be asymptomatic, or it may present with a range of conditions from a mild, febrile illness to severe hemorrhagic syndromes and/or neurological complications. There is a need to develop safe and effective vaccines, a process requiring better understanding of the adaptive immune responses involved during infection. This review highlights the most recent findings regarding T cell and antibody responses to the five Bunyavirales families with known human pathogens (Peribunyaviridae, Phenuiviridae, Hantaviridae, Nairoviridae, and Arenaviridae). Future studies that define and characterize mechanistic correlates of protection against Bunyavirales infections or disease will help inform the development of effective vaccines.


Assuntos
Arenaviridae , Vírus de RNA , Vacinas , Humanos , Imunidade Adaptativa
13.
Sci Rep ; 14(1): 7366, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548896

RESUMO

Interleukin 12 (IL-12) is a potent immunostimulatory cytokine mainly produced by antigen-presenting cells (e.g., dendritic cells, macrophages) and plays an important role in innate and adaptive immunity against cancers. Therapies that can synergistically modulate innate immunity and stimulate adaptive anti-tumor responses are of great interest for cancer immunotherapy. Here we investigated the lipid nanoparticle-encapsulated self-replicating RNA (srRNA) encoding IL-12 (referred to as JCXH-211) for the treatment of cancers. Both local (intratumoral) and systemic (intravenous) administration of JCXH-211 in tumor-bearing mice induced a high-level expression of IL-12 in tumor tissues, leading to modulation of tumor microenvironment and systemic activation of antitumor immunity. Particularly, JCXH-211 can inhibit the tumor-infiltration of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). When combined with anti-PD1 antibody, it was able to enhance the recruitment of T cells and NK cells into tumors. In multiple mouse solid tumor models, intravenous injection of JCXH-211 not only eradicated large preestablished tumors, but also induced protective immune memory that prevented the growth of rechallenged tumors. Finally, intravenous injection of JCXH-211 did not cause noticeable systemic toxicity in tumor-bearing mice and non-human primates. Thus, our study demonstrated the feasibility of intravenous administration of JCXH-211 for the treatment of advanced cancers.


Assuntos
Lipossomos , Nanopartículas , Neoplasias , Camundongos , Animais , Interleucina-12/genética , Imunidade Adaptativa , Imunoterapia , Administração Intravenosa , Microambiente Tumoral , Linhagem Celular Tumoral
14.
Hum Vaccin Immunother ; 20(1): 2323256, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38544385

RESUMO

Cell-based therapeutic cancer vaccines use autologous patient-derived tumor cells, allogeneic cancer cell lines or autologous antigen presenting cells to mimic the natural immune process and stimulate an adaptive immune response against tumor antigens. The primary objective of this study is to perform a systematic literature review with an embedded meta-analysis of all published Phase 2 and 3 clinical trials of cell-based cancer vaccines in human subjects. The secondary objective of this study is to review trials demonstrating biological activity of cell-based cancer vaccines that could uncover additional hypotheses, which could be used in the design of future studies. We performed the systematic review and meta-analysis according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The final review included 36 studies - 16 single-arm studies, and 20 controlled trials. Our systematic review of the existing literature revealed largely negative trials and our meta-analysis did not show evidence of clinical benefit from cell-based cancer-vaccines. However, as we looked beyond the stringent inclusion criteria of our systematic review, we identified significant examples of biological activity of cell-based cancer vaccines that are worth highlighting. In conclusion, the existing literature on cell-based cancer vaccines is highly variable in terms of cancer type, vaccine therapies and the clinical setting with no overall statistically significant clinical benefit, but there are individual successes that represent the promise of this approach. As cell-based vaccine technology continues to evolve, future studies can perhaps fulfill the potential that this exciting field of anti-cancer therapy holds.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antígenos de Neoplasias , Imunidade Adaptativa
15.
Semin Immunol ; 72: 101873, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460395

RESUMO

Since the onset of the COVID-19 pandemic, significant progress has been made in developing effective preventive and therapeutic strategies against severe acute SARS-CoV-2 infection. However, the management of Long COVID (LC), an infection-associated chronic condition that has been estimated to affect 5-20% of individuals following SARS-CoV-2 infection, remains challenging due to our limited understanding of its mechanisms. Although LC is a heterogeneous disease that is likely to have several subtypes, immune system disturbances appear common across many cases. The extent to which these immune perturbations contribute to LC symptoms, however, is not entirely clear. Recent advancements in multi-omics technologies, capable of detailed, cell-level analysis, have provided valuable insights into the immune perturbations associated with LC. Although these studies are largely descriptive in nature, they are the crucial first step towards a deeper understanding of the condition and the immune system's role in its development, progression, and resolution. In this review, we summarize the current understanding of immune perturbations in LC, covering both innate and adaptive immune responses, and the cytokines and analytes involved. We explore whether these findings support or challenge the primary hypotheses about LC's underlying mechanisms. We also discuss the crosstalk between various immune system components and how it can be disrupted in LC. Finally, we emphasize the need for more tissue- and subtype-focused analyses of LC, and for enhanced collaborative efforts to analyze common specimens from large cohorts, including those undergoing therapeutic interventions. These collective efforts are vital to unravel the fundaments of this new disease, and could also shed light on the prevention and treatment of the larger family of chronic illnesses linked to other microbial infections.


Assuntos
COVID-19 , Síndrome Pós-COVID-19 Aguda , Humanos , Pandemias , SARS-CoV-2 , Imunidade Adaptativa , Análise de Sistemas , Imunidade Inata
16.
Anticancer Res ; 44(4): 1353-1364, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538001

RESUMO

Ataxia-telangiectasia mutated (ATM) is a pivotal protein with versatile kinase activity that responds to DNA damage. While its well-established role as a DNA repair protein is widely recognized, the understanding of its noncanonical functions in ovarian cancer remains limited. Numerous studies have investigated the potential of targeting ATM for ovarian cancer treatment. In addition to its involvement in homologous recombination repair (HRR), an increasing body of research suggests that ATM plays a role in cellular metabolism and adaptive immunity. This review focuses on the current evidence and provides a perspective on how targeting ATM in ovarian cancer can address HRR-deficient genotypes, influence macropinocytosis, and enhance immune checkpoint blockade (ICB) therapy. It underscores the diverse avenues through which targeting ATM is a potential tailored treatment for ovarian cancer.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias Ovarianas , Feminino , Humanos , Imunidade Adaptativa , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo
17.
Front Immunol ; 15: 1357342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524133

RESUMO

Introduction: Diabetes mellitus (DM) is recognized as one of the oldest chronic diseases and has become a significant public health issue, necessitating innovative therapeutic strategies to enhance patient outcomes. Traditional treatments have provided limited success, highlighting the need for novel approaches in managing this complex disease. Methods: In our study, we employed graph signature-based methodologies in conjunction with molecular simulation and free energy calculations. The objective was to engineer the CA33 monoclonal antibody for effective targeting of the aP2 antigen, aiming to elicit a potent immune response. This approach involved screening a mutational landscape comprising 57 mutants to identify modifications that yield significant enhancements in binding efficacy and stability. Results: Analysis of the mutational landscape revealed that only five substitutions resulted in noteworthy improvements. Among these, mutations T94M, A96E, A96Q, and T94W were identified through molecular docking experiments to exhibit higher docking scores compared to the wild-type. Further validation was provided by calculating the dissociation constant (KD), which showed a similar trend in favor of these mutations. Molecular simulation analyses highlighted T94M as the most stable complex, with reduced internal fluctuations upon binding. Principal components analysis (PCA) indicated that both the wild-type and T94M mutant displayed similar patterns of constrained and restricted motion across principal components. The free energy landscape analysis underscored a single metastable state for all complexes, indicating limited structural variability and potential for high therapeutic efficacy against aP2. Total binding free energy (TBE) calculations further supported the superior performance of the T94M mutation, with TBE values demonstrating the enhanced binding affinity of selected mutants over the wild-type. Discussion: Our findings suggest that the T94M substitution, along with other identified mutations, significantly enhances the therapeutic potential of the CA33 antibody against DM by improving its binding affinity and stability. These results not only contribute to a deeper understanding of antibody-antigen interactions in the context of DM but also provide a valuable framework for the rational design of antibodies aimed at targeting this disease more effectively.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Simulação de Acoplamento Molecular , Modelos Moleculares , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Anticorpos Monoclonais , Imunidade Adaptativa
18.
Nature ; 628(8006): 162-170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538791

RESUMO

Ageing of the immune system is characterized by decreased lymphopoiesis and adaptive immunity, and increased inflammation and myeloid pathologies1,2. Age-related changes in populations of self-renewing haematopoietic stem cells (HSCs) are thought to underlie these phenomena3. During youth, HSCs with balanced output of lymphoid and myeloid cells (bal-HSCs) predominate over HSCs with myeloid-biased output (my-HSCs), thereby promoting the lymphopoiesis required for initiating adaptive immune responses, while limiting the production of myeloid cells, which can be pro-inflammatory4. Ageing is associated with increased proportions of my-HSCs, resulting in decreased lymphopoiesis and increased myelopoiesis3,5,6. Transfer of bal-HSCs results in abundant lymphoid and myeloid cells, a stable phenotype that is retained after secondary transfer; my-HSCs also retain their patterns of production after secondary transfer5. The origin and potential interconversion of these two subsets is still unclear. If they are separate subsets postnatally, it might be possible to reverse the ageing phenotype by eliminating my-HSCs in aged mice. Here we demonstrate that antibody-mediated depletion of my-HSCs in aged mice restores characteristic features of a more youthful immune system, including increasing common lymphocyte progenitors, naive T cells and B cells, while decreasing age-related markers of immune decline. Depletion of my-HSCs in aged mice improves primary and secondary adaptive immune responses to viral infection. These findings may have relevance to the understanding and intervention of diseases exacerbated or caused by dominance of the haematopoietic system by my-HSCs.


Assuntos
Imunidade Adaptativa , Envelhecimento , Linhagem da Célula , Células-Tronco Hematopoéticas , Linfócitos , Células Mieloides , Rejuvenescimento , Animais , Feminino , Masculino , Camundongos , Imunidade Adaptativa/imunologia , Envelhecimento/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Inflamação/imunologia , Inflamação/patologia , Linfócitos/citologia , Linfócitos/imunologia , Linfopoese , Células Mieloides/citologia , Células Mieloides/imunologia , Mielopoese , Fenótipo , Linfócitos T/citologia , Linfócitos T/imunologia , Vírus/imunologia
19.
Trends Immunol ; 45(4): 303-313, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508931

RESUMO

CD4+ T cells are crucial in generating and sustaining immune responses. They orchestrate and fine-tune mammalian innate and adaptive immunity through cell-based interactions and the release of cytokines. The role of these cells in contributing to the efficacy of antitumor immunity and immunotherapy has just started to be uncovered. Yet, many aspects of the CD4+ T cell response are still unclear, including the differentiation pathways controlling such cells during cancer progression, the external signals that program them, and how the combination of these factors direct ensuing immune responses or immune-restorative therapies. In this review, we focus on recent advances in understanding CD4+ T cell regulation during cancer progression and the importance of CD4+ T cells in immunotherapies.


Assuntos
Neoplasias , Linfócitos T , Animais , Humanos , Linfócitos T/patologia , Imunoterapia , Imunidade Adaptativa , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Mamíferos
20.
J Immunother Cancer ; 12(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38458776

RESUMO

BACKGROUND: Cancer immunotherapy relies on using the immune system to recognize and eradicate cancer cells. Adaptive immunity, which consists of mainly antigen-specific cytotoxic T cells, plays a pivotal role in controlling cancer progression. However, innate immunity is a necessary component of the cancer immune response to support an immunomodulatory state, enabling T-cell immunosurveillance. METHODS: Here, we elucidated and exploited innate immune cells to sustain the generation of antigen-specific T cells on the use of our cancer vaccine platform. We explored a previously developed oncolytic adenovirus (AdCab) encoding for a PD-L1 (Programmed-Death Ligand 1) checkpoint inhibitor, which consists of a PD-1 (Programmed Cell Death Protein 1) ectodomain fused to an IgG/A cross-hybrid Fc. We coated AdCab with major histocompatibility complex (MHC-I)-restricted tumor peptides, generating a vaccine platform (named PeptiCab); the latter takes advantage of viral immunogenicity, peptide cancer specificity to prime T-cell responses, and antibody-mediated effector functions. RESULTS: As proof of concept, PeptiCab was used in murine models of melanoma and colon cancer, resulting in tumor growth control and generation of systemic T-cell-mediated antitumor responses. In specific, PeptiCab was able to generate antitumor T effector memory cells able to secrete various inflammatory cytokines. Moreover, PeptiCab was able to polarize neutrophils to attain an antigen-presenting phenotype by upregulating MHC-II, CD80 and CD86 resulting in an enhanced T-cell expansion. CONCLUSION: Our data suggest that exploiting innate immunity activates T-cell antitumor responses, enhancing the efficiency of a vaccine platform based on oncolytic adenovirus coated with MHC-I-restricted tumor peptides.


Assuntos
Neoplasias , Receptores de IgG , Humanos , Animais , Camundongos , Imunidade Adaptativa , Linfócitos T Citotóxicos , Citocinas/metabolismo , Neoplasias/terapia , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...